Demo: Interactive Off-the-Shelf In-Car TSN Testbed

Darinela Andronovici*, Damien Nicolas*, Ion Turcanu*, and Christoph Sommert
*Luxembourg Institute of Science and Technology (LIST), Luxembourg
TTU Dresden, Faculty of Computer Science, Germany

{ darinela.andronovici,

damien.nicolas,

ion.turcanu }@list.lu

https://www.cms—-labs.org/people/sommer

Abstract—Modern automotive networks based on Time-
Sensitive Networking (TSN) are becoming increasingly complex.
While hands-on experience is critical to understanding these
concepts, the complexity and cost associated with TSN technologies
often make practical training inaccessible. As an alternative,
network simulation tools have been widely adopted, but they lack
interactivity and immediate feedback. To bridge this gap, we
propose an interactive and affordable TSN testbed built using
off-the-shelf hardware. Our solution provides a user-friendly
interface for configuring the testbed and experiencing real-time
interactions, such as assessing the impact of background noise
traffic on automotive LiDAR sensor data. We demonstrate the
functionality of our testbed and provide open-source access to
the source code, aiming to improve the quality of TSN training
and live experimentation.

I. INTRODUCTION

Hands-on experience is generally considered to be a crucial
part of gaining a deep understanding of networking [1] — be it
for students, researchers, or practitioners. However, as essential
as it is, practical experience is often hard to come by. This is
particularly true for technologies that are complex, expensive,
or both, such as Time-Sensitive Networking (TSN) as deployed
for in-car networking of modern and future vehicles [2], [3].

By necessity, many therefore turn to simulations of TSN
networks as a substitute for hands-on experience. There is a
wide range of excellent simulators or simulation frameworks
available for this purpose, such as ns-3 [4] and OMNeT++ [5],
the latter if paired with module libraries such as the INET
Framework [6], NesTing [7], or CoRE4INET [8]. These
simulators offer tremendous flexibility and are widely used
in research and teaching. However, they are limited in their
interactivity because they are designed to run simulations and
only then present results — often after considerable computation
time — rather than allowing users to interact with the system
and get immediate feedback on their actions, thus reducing
effectiveness [9].

Therefore, there is a real need for an interactive, affordable,
real-world TSN testbed with a flat learning curve for training
and live experimentation. In this demo paper, we describe how
such a testbed can be built using Commercial Off-the-Shelf
(COTS) hardware and demonstrate its functionality in terms
of configuration capabilities and user interaction aiming to
enhance the quality of experience. In particular, our solution
provides an easy-to-use interface that allows users to interact
with and configure an in-car TSN testbed and to experience the
impact of background noise traffic on the data generated by

traffic
generator

listener

LiDAR TSN bridge web browser

server

Figure 1. Testbed architecture.

Figure 2. Photo of the demo.

an automotive LiDAR sensor. We provide open-source access
to the source code of the proposed solution.!

II. SYSTEM DESIGN

Figure 1 presents the architecture of the proposed system,
which has the following hardware components: a Robosense
Helios 16 high-precision 3D LiDAR, a TSN bridge (RELY-
TsN-Bridge v20.1.11), a traffic generator (RELY-TRAF-GEN
v20.1.0), and a listener, which is an off-the-shelf Linux machine.
The hardware components are connected using 1 Gbit/s Cat5
Ethernet cables. A photo of the demo setup is shown in
Figure 2.

The LiDAR sensor supports GPS, PTP, and gPTP as
synchronization mechanisms. It transmits data over Ethernet
using User Datagram Protocol (UDP) datagrams that use both
the Main data Stream Output Protocol (MSOP) and the Device
Information Output Protocol (DIFOP). The DIFOP packets

! Available at https://github.com/LIST-LUXEMBOURG/TSNavig8

© 2024 |IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

IEEE Vehicular Networking Conference (VNC 2024)




contain various information about the sensor configuration and
its current state, while the MSOP packets contain the laser
scanning data, including distance, angle, and reflection intensity.
The traffic generator is a device capable of sending Layer 2
traffic to the network with configurable parameters such as
packet size, transmission rate, VLAN ID (VID), and Priority
Code Point (PCP).

The software architecture of our proposed demo runs entirely
on the listener and includes a server written in Python and a
web client application developed using the Vise.js framework.

The server consists of three distinct processes: (i) a process
dedicated to receiving data from the LiDAR sensor and
transmitting it to the web client, (ii) a process dedicated
to monitoring bandwidth, and (iii) a process dedicated to
configuring the hardware components. In particular, the first
process running on the server listens on UDP port 6699 where
MSOP packets are sent from the LiDAR. This UDP listener
processes the payload of the datagrams and converts the polar
coordinates (angle and distance) to Cartesian coordinates. Once
completed, the messages containing the (z, y, z, distance) tuple
are sent to the web client application. The distance measured in
centimeters is used to compute the color of each point. Points
closer to the LiDAR appear red, while those further away appear
blue. The second process is responsible for computing the real-
time bandwidth utilization every second and sending this data
to the web client application. Finally, the third process is used
to perform hardware configuration over the Secure Shell (SSH)
protocol based on input parameters provided by the user.

The web client application consists of several Viee.js compo-
nents that are connected to the aforementioned server processes
via WebSockets. Specifically, the PlotLidarComponent uses
the Three.js library to render cloud points, allowing the user
to visualize scanned data from the LiDAR sensor. Next, the
PlotBandwidthComponent uses Chart.js to plot the bandwidth
utilization measured in Mbit/s. In addition to the visualization
components, the demo includes two configuration components,
one for the traffic generator and one for the Time-Aware Shaper
(TAS) mechanism in the TSN bridge.

III. DEMONSTRATION

Figure 3 illustrates the interface of our proposed solution. The
web interface features two interactive graphs: one displaying
LiDAR data with live rendering and one displaying the real-time
visualization of bandwidth utilization.

The row of action buttons positioned above the LiDAR plot
provides the following key functions: starting and stopping the
LiDAR data capture, controlling traffic generation with Start
and Stop commands, enabling and disabling the Time-Aware
Shaper (TAS) mechanism, running a Negative Test which aims
to highlight the limitations of standard Ethernet, and resetting
the TAS configuration if necessary.

The button in the upper right corner opens a sidebar that
allows the user to configure key parameters of the frames sent
by the traffic generator: frame size, Priority Code Point (PCP),
and bandwidth usage as a fraction of available bandwidth. It
is also possible to freely define the TAS configuration by

Interactive Off-the-Shelf In-Car TSN Testbed

Lidar Visualization Real-Time Bandwidth Utilization

00000 O

LISTE

NG ac

Figure 3. Screenshot of the user interface.

specifying the number of slots, their duration, and which
priority queues are enabled.

Taken together, this allows users to test different traffic
patterns and TAS configurations and to see, live, their effect on
a real sensor. This, in turn, allows users to directly experience —
and thus get an intuitive understanding of — the interrelation
of network configuration, network performance, and quality of
sensor data.

ACKNOWLEDGMENTS

This research was funded in whole, or in part, by the
Luxembourg National Research Fund (FNR), grant reference
DEFENCE22/1S/17800623/LEONE. For the purpose of open
access, and in fulfilment of the obligations arising from the
grant agreement, the authors have applied a Creative Commons
Attribution 4.0 International (CC BY 4.0) license to any Author
Accepted Manuscript version arising from this submission.

REFERENCES

[11 M. Prvan and J. OZegovi¢, “Methods in Teaching Computer Networks: A
Literature Review,” ACM Transactions on Computing Education, vol. 20,
no. 3, Jun. 2020.

[2] Y. Peng, B. Shi, T. Jiang, X. Tu, D. Xu, and K. Hua, “A Survey on
In-Vehicle Time-Sensitive Networking,” IEEE Internet of Things Journal,
vol. 10, no. 16, pp. 14375-14396, Aug. 2023.

[3] I Turcanu and C. Sommer, “Poster: Potentials of Mixing TSN Wired
Networks and Best-Effort Wireless Networks for V2X,” in 13th IEEE
Vehicular Networking Conference (VNC 2021), Poster Session, Virtual
Conference: IEEE, Nov. 2021, pp. 135-136.

[4] G. F. Riley and T. R. Henderson, “The ns-3 Network Simulator,” in
Modeling and Tools for Network Simulation. Springer, 2010, pp. 15-34.

[S] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation.
Springer, 2010, pp. 35-59.

[6] L. Mészéros, A. Varga, and M. Kirsche, “INET Framework,” in Recent
Advances in Network Simulation: The OMNeT++ Environment and its
Ecosystem. Springer, 2019, pp. 55-106.

[71 J. Falk et al., “NeSTiNg: Simulating IEEE Time-sensitive Networking
(TSN) in OMNeT++,” in 2019 International Conference on Networked
Systems (NetSys), IEEE, Mar. 2019.

[8] T. Steinbach, H. D. Kenfack, F. Korf, and T. C. Schmidt, “An extension
of the OMNeT++ INET framework for simulating real-time Ethernet with
high accuracy,” in 4th International ICST Conference on Simulation Tools
and Techniques, Barcelona, Spain: ICST, 2011, pp. 375-382.

[9] F. M. van der Kleij, R. C. W. Feskens, and T. J. H. M. Eggen, “Effects
of Feedback in a Computer-Based Learning Environment on Students’
Learning Outcomes: A Meta-Analysis,” AERA Review of Educational
Research (RER), vol. 85, no. 4, pp. 475-511, Dec. 2015.



